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This paper presents a method to perform chord classification from recorded audio.The signal harmonics are obtained by using the
Fast Fourier Transform, and timbral information is suppressed by spectral whitening. Amultiple fundamental frequency estimation
of whitened data is achieved by adding attenuated harmonics by a weighting function.This paper proposes a method that performs
feature selection by using a thresholding of the uncertainty of all frequency bins. Those measurements under the threshold are
removed from the signal in the frequency domain. This allows a reduction of 95.53% of the signal characteristics, and the other
4.47% of frequency bins are used as enhanced information for the classifier. An Artificial Neural Network was utilized to classify
four types of chords: major, minor, major 7th, and minor 7th. Those, played in the twelve musical notes, give a total of 48 different
chords. Two reference methods (based on Hidden Markov Models) were compared with the method proposed in this paper by
having the same database for the evaluation test. In most of the performed tests, the proposed method achieved a reasonably high
performance, with an accuracy of 93%.

1. Introduction

A chord, by definition, is a harmonic set of two or more
musical notes that are heard as if they was simultaneously
sounding [1]. A musical note refers to the pitch class set of 𝐶,
𝐶♯/𝐷♭, 𝐷, 𝐷♯/𝐸♭, 𝐸, 𝐹, 𝐹♯/𝐺♭, 𝐺, 𝐺♯/𝐴♭, 𝐴, 𝐴♯/𝐵♭, 𝐵, and
the intervals between notes are known as half-note interval
or semitone interval. Thus, chords can be seen as musical
features and they are the principal harmonic content that
describes a musical piece [2, 3].

A chord has a basic construction known as triad that
includes notes identified as a fundamental (the root), a third,
and a fifth [4]. The root can be any note chosen from the
pitch class set, and it is used as the first note to construct
the chord; besides, this note gives the name to the chord.
The third has the function of making the chord be minor or

major. For a minor chord the third is located at 3 half-notes
intervals from the root. On the other hand, a major chord has
the third placed at 4 half-note intervals from the root. The
perfect fifth, which completes the triad, is located at 7 half-
note intervals from the root. If a note is added to the triad at 11
half-note intervals from the root, then the chord will become
a 7th chord. For instance, a 𝐶 major chord (𝐶Maj) will be
composed of a root𝐶 note, amajor third𝐸 note, and a perfect
fifth 𝐺 note; the 𝐶 major with a 7th (𝐶Maj7) is composed of
the same triad of 𝐶major plus the 7th note 𝐵.

Chord arrangements, melody and lyrics, can be grouped
in written summaries known as lead sheets [5]. All kind of
musicians, from professionals to amateur, make use of these
sheets because they provide additional information about
when and how to play the chords or some other arrangement
on a melody.
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Writing lead sheets of chords by hand is a task known as
chord transcription. It can only be performed by an expert;
however this is a time-consuming and expensive process. In
engineering, the automatization of chord transcription has
been considered a high-level task and has some applications
such as key detection [6, 7], cover song identification [8], and
audio-to-lyrics alignment [9].

Chord transcription requires recognizing or estimating
the chord from an audio file by applying some signal pre-
processing.Themost commonmethod for chord recognition
is based on templates [10, 11]; in this case a template is a
vector of numbers. Then, this method suggests that only
chord definition is necessary to achieve recognition. The
simplest chord template has a binary structure, for this
kind of template, the notes that belong to the chord will
have unit amplitude, and the remaining ones will have null
amplitude. This template is described by a 12-dimensional
vector; each number in the vector represents a semitone in
the chromatic scale or pitch class set. As an illustration, the 𝐶
major chord template will be [1 0 0 0 1 0 0 1 0 0 0].
The 12-dimensional vectors obtained from an audio frame
signal are known as chroma vectors, and they were proposed
by Fujishima [12] for chord recognition using templates. In
his work, chroma vectors are obtained from the Discrete
Fourier Transform (DFT) of the input signal. Fujishima’s
method (Pitch Class Profile, PCP) is based on an intensity
map on the Simple Auditory Model (SAM) of Leman [13].
This allows chroma vector to be formed by the energy of the
twelve semitones of the chromatic scale. In order to perform
chord recognition, two matching methods were tested: the
Nearest Neighbors [14] (Euclidean distances between the
template vectors and the chroma vectors) and the Weighted
Sum Method (dot product between chroma vectors and
templates).

Lee [11] applied the Harmonic Product Spectrum (HPS)
[15] to propose the Enhanced Pitch Class Profile (EPCP). In
his study, chord recognition is performed by maximizing the
correlation between chord templates and chroma vectors.

Template matching models have poor recognition per-
formance on real life songs, because chords change with
time, and consequently chroma vectors will have semitones
of two different chords. Therefore, statistical models became
popularmethods for chord recognition [16–18].Thus,Hidden
Markov Models [19, 20] (HMM) are probabilistic models for
a sequence of observed variables assumed to be independent
of each other, and it is supposed that there is a sequence of
hidden variables that are related with the observed variables.

Barbancho et al. [21] proposed a method using HMM
to perform a transcription of guitar chords. The chord types
used in their study are major, minor, major 7th, and minor
7th of each root of the pitch class set. That is a total of 48
chord types. All of them can be played in many different
forms; thus, to play the same chord several finger positions
can be used. In their work, 330 different forms for 48 chord
types are proposed (for details see the reference); in this
case every single form is a hidden state. Feature extraction
is achieved by the algorithm presented by Klapuri [22], and
a model that constrains the transitions between consecutive
forms is proposed.Additionally, a cost function thatmeasures

the physical difficulty of moving from one chord form
to another one is developed. Their method was evaluated
using recordings from threemusical instruments: an acoustic
guitar, an electric guitar, and a Spanish guitar.

Ryynänen and Klapuri [23] proposed a method using
HMM to perform melody transcription and classification
of bass line and chords in polyphonic music. In this case,
fundamental frequencies (𝐹

0
’s) are found using the estimator

in [21]; after that, these are passed through a PCP algorithm
in order to enhance them. A HMM of 24 states (12 states
for major chords and 12 states for minor ones) is defined.
The transition probabilities between states are found using
the Viterbi algorithm [24]. The method does not detect
silent segments; however, it provides chord labeling for each
analyzed frame.

The aforementionedmethods achieve low accuracies, and
the most recent cited one, the method from Barbancho et al.,
achieves high accuracy by combining probabilistic models.
However, the uses of a HMM and the probabilistic models
in their work make such method somewhat complex.

In this paper, we propose a method based on Artificial
Neural Networks (ANNs) to classify chords from recorded
audio. This method classifies chords from any octave for a
six-string standard guitar. The chord types are major, minor,
major 7th, and minor 7th, that is, the same variants for the
chords used by Barbancho et al. [21]. First, time signals are
converted to the frequency domain, and timbral information
is suppressed by spectral whitening. For feature selection, we
propose an algorithm that measures the uncertainty for the
frequency bins. This allows reducing the dimensionality of
the input signal and enhances the relevant components to
improve the accuracy of the classifier. Finally, the extracted
information is sent to an ANN to be classified. Our method
avoids the calculation of transition probabilities and prob-
abilistic models working in combination; nevertheless the
accuracy achieved in this study has superior performance
over the most mentioned methods.

The rest of this paper is organized as follows. In Section 2,
fundamental concepts related to this study are presented.
Section 3 details the theoretical aspects of the proposed
method. Section 4 presents experimental results that validate
the proposedmethod, and Section 5 includes our conclusions
and directions for future work.

2. General Concepts

For clarity purposes, this section presents two important con-
cepts widely used in Digital Signal Processing (DSP). These
concepts are the Fourier Transform and spectral whitening.

2.1. Transformation to Frequency Domain. The human hear-
ing system is capable of performing a transformation from
the time domain to the frequency domain. There is evidence
that humans are more sensitive to magnitude than phase
information [25]; as a consequence humans can perceive
harmonic information. This is the main idea to perform the
classification of guitar audio signals in this work.Therefore, a
frequency domain representation of the original signal has to
be calculated.
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Figure 1: Example of a spectrogram.

The time to frequency domain transformation is obtained
by applying the Fast Fourier Transform (FFT) to the input
signal 𝑥[𝑛] and is represented by

𝑋 = F {𝑥 [𝑛]} . (1)

Equation (1) describes the transformation of 𝑥[𝑛] at all
times. However, this is not convenient because songs or
signals, in general, are not stationary. For this reason, a
window function, 𝑤[𝑛], is applied to the time signal as

𝑧 [𝑛] = 𝑥 [𝑛]𝑤 [𝑛] , (2)

where 𝑤[𝑛], for this study, is the Hamming window function
according to

𝑤 [𝑛] = 𝜑 − (1 − 𝜑) cos( 2𝜋𝑛

𝑁 − 1
) , (3)

where 𝜑 = 0.54, 𝑛 = [0,𝑁 − 1], and 𝑁 is the number of
samples in the frame analysis. A study about the use of
differentwindow types can be found inHarris [26]. Equations
(2) and (3) divide the signal in different frames that allowing
the analysis of the signal in the frequency domain by

𝑋
𝑤
= F {𝑧 [𝑛]} . (4)

For this work, windowing functions will have 50% of
overlapping to analyze the entire signal and thus obtain a
set of frames 𝑧

𝑖
[𝑛] (for simplicity in the notation 𝑧

𝑖
will

be used). Those frames can be concatenated to construct a
matrix Z = [𝑧

1
𝑧
2

⋅ ⋅ ⋅ 𝑧
𝑖
], and, then, compute the FFT for

every column. The result is a representation in the frequency
domain as in Figure 1; this representation is known as
spectrogram [27]. This is the format that the signals will be
presented to the classifier for training.

2.2. Spectral Whitening. This process allows obtaining a
uniform spectrum of the input signal, and it is achieved by
boosting the frequency bins of the FFT. There exist different
methods to perform spectral whitening [28–31].

Thus, inverse filtering [22] is the whitening method used
in our experiments, and it is described next.

First, the original windowed signal is zero-padded to
twice its length as

𝑦
𝑖
= [𝑧𝑖 0 0 ⋅ ⋅ ⋅ 0]

⊺

, (5)
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Figure 2: Responses𝐻
𝑏
(𝑘) applied in spectral whitening.

and its FFT, represented by Γ
𝑖
, is calculated. The resulting

frequency spectrumwill have an improved amplitude estima-
tion because of the zero-padding. Next, a filter bank is applied
to Γ
𝑖
; the central frequencies of this bank are given by

𝑐
𝑏
= 229 (10

(𝑏+1)/21.4
− 1) , (6)

where 𝑏 = 0, . . . , 30. In this case, each filter in the bank has
a triangular response 𝐻

𝑏
; in fact, this bank tries to simulate

the inner ear basilar membrane. The band-pass frequencies
for each filter are from 𝑐

𝑏−1
to 𝑐
𝑏+1

. Because there is no more
relevant information at higher frequencies than 7000Hz, the
maximum value for the parameter 𝑏 was 30.

Subsequently, the standard deviations 𝜎
𝑏
are calculated as

𝜎
𝑏
= (

1

𝐾
∑

𝑘

𝐻
𝑏
(𝑘)

󵄨󵄨󵄨󵄨Γ𝑖 (𝑘)
󵄨󵄨󵄨󵄨

2
)

1/2

for 𝑘 = 0, 1, . . . , 𝐾 − 1,

(7)

where uppercase 𝐾 is the length of the FFT series.
Later on, the compression coefficients for the central fre-

quencies 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑏
are calculated as 𝛾

𝑏
= 𝜎

]−1
𝑏

, where ] =

[0, 1] is the amount of spectralwhitening applied to the signal.
The coefficients 𝛾

𝑏
are those that belong to the frequency bin

of the “peak” of each triangle response; observe Figure 2.The
rest of the coefficients 𝛾(𝑘) for the remaining frequency bins
are obtained performing a linear interpolation between the
central frequency coefficients 𝛾

𝑏
.

Finally, the white spectrum is obtained with a pointwise
multiplication of all compression coefficients with Γ

𝑖
as

I
𝑖
(𝑘) = 𝛾 (𝑘) Γ

𝑖
(𝑘) . (8)
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Figure 3: Overview of the proposed system for training with 𝑓
𝐿
frequency bins and𝑚 samples of audio.

3. Proposed Method

Our proposed method is described in the block diagram
shown in Figure 3. The method begins by defining the
columns of matrix Z as

Z =

[
[
[
[
[
[

[

𝑧
1 [0] 𝑧

2 [0] ⋅ ⋅ ⋅ 𝑧
𝑚 [0]

𝑧
1 [1] 𝑧

2 [1] ⋅ ⋅ ⋅ 𝑧
𝑚 [1]

.

.

.
.
.
. d

.

.

.

𝑧
1
[𝑓
𝐿
] 𝑧
2
[𝑓
𝐿
] ⋅ ⋅ ⋅ 𝑧

𝑚
[𝑓
𝐿
]

]
]
]
]
]
]

]

, (9)

where a single column vector [𝑧
𝑚
[0] 𝑧

𝑚
[1] ⋅ ⋅ ⋅ 𝑧

𝑚
[𝑓
𝐿
]]
⊺

represents the𝑚th Hamming windowed audio sample.These
columns are zero-padding to twice their length 𝑓

𝐿
as

Y = [Z | 0]⊺ = [𝑦1 𝑦
2

⋅ ⋅ ⋅ 𝑦
𝑚] , (10)

where 0 is a zero matrix of the same size of Z. Then, (10)
indicates an augmented matrix.

After that, the signal spectrum for every column of Y
is calculated by applying the FFT, and then these columns
are passed through a spectral whitening step and the output
matrix is represented as I. Furthermore, by taking advantage
of the symmetrical shape of the FFT, only the first half of the
frequency spectrum (represented by Λ) is taken in order to
perform the analysis.

A multiple fundamental frequency estimation algorithm
and a weighting function are applied to the whitened audio
signals. These algorithms enhance the fundamental frequen-
cies by adding their harmonics attenuated by the weighting
function. The output matrix of this step is denoted asΦ.

The training set includes all data in a matrix of 𝑓
𝐿

frequency bins and 𝑚 audio samples, where each row or
frequency bin will be an input to the classifier. The number
of inputs can be reduced from 𝑓

𝐿
to 𝑓
𝑃
(T matrix) by

applying a method based on the uncertainty of the frequency
bins, thus enhancing the pertinent information to perform
a classification. Finally, enhanced data are used to train the
classifier and then to validate its performance.

3.1. Multiple Fundamental Frequency Estimation. The funda-
mental frequencies of the semitones in the guitar are defined
by

𝑓
𝑗
= 2
𝑗/12

𝑓min, (11)

where 𝑗 ∈ Z and 𝑓min is the minimum frequency to be
known; for example, in a standard six-string guitar, the lowest
note is 𝐸 having a frequency of 82Hz.

Signal theory establishes that the harmonic partials (or
just harmonics) of a fundamental frequency are defined by

𝑓
ℎ
𝑟

= ℎ
𝑟
𝑓
𝑗
, (12)

where ℎ
𝑟
= 2, 3, 4, . . . ,𝑀 + 1. In this study 𝑀 represents the

number of harmonics to be considered. As an illustration, for
a fundamental frequency 𝑓

𝑗
= 131Hz of a 𝐶 note, the first

three harmonics will be the set {262, 393, 524}.
In this work, if a frequency is located at ±3% of the

semitones frequencies, then this frequency is considered to
be correct. This approach was proposed in [22].

In an𝑚th frame under analysis, fundamental frequencies
can be raised if harmonics are added to its fundamentals [22],
by applying

Λ (𝑓
𝑗
, 𝑚) = Λ (𝑓

𝑗
, 𝑚) +

𝑀+1

∑

ℎ
𝑟
=2

Λ (ℎ
𝑟
𝑓
𝑗
, 𝑚) , (13)

and, then, all harmonics Λ(ℎ
𝑟
𝑓
𝑗
, 𝑚) and their fundamental

frequencies Λ(𝑓
𝑗
, 𝑚), described in (13), are removed from

the frequency spectrum. When the resulting signal is again
analyzed, with the describedmethod, a different fundamental
frequency will be raised.

A common issue with (13) is when two or more funda-
mentals share a same harmonic. For instance, the fundamen-
tal frequency of 65.5Hz of 𝐶 note has a harmonic located
at 196.5Hz. When the Euclidean distances [32] between the
analysis frequency and the frequencies of the semitones are
computed, the minimum distance or nearest frequency will
correspond to the 𝐺 note.This implies that if those two notes
are present in the same analysis frame, then the harmonic of
𝐺 will be summed and eliminated with the harmonics of the
𝐶 note. This is because the 196Hz harmonic is located in the
range of ±3% of the frequency of a 𝐺 note.

There are some methods that deal with this problem. In
[33], a technique that makes use of a moving average filter is
proposed. In that work, the fundamental frequency takes its
original amplitude and a moving average filter modifies the
amplitude of its harmonics.Then, only part of their amplitude
is removed from the original frequency spectrum.

In [22], a weighting function that modifies the amplitude
of the harmonics is proposed. Also, an algorithm to find
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multiple fundamental frequencies is suggested.Theweighting
function is given by

𝑔
𝜏,ℎ
𝑟

=
𝑓
𝑠
/𝜏max + 𝛼

ℎ
𝑟
𝑓
𝑠
/𝜏 + 𝛽

, (14)

where𝑓
𝑠
/𝜏max represents the low limit frequency (e.g., 82Hz),

𝑓
𝑠
/𝜏 is the fundamental frequency 𝑓

𝑗
under analysis, and

𝑓
𝑠
is the sampling frequency. The parameters 𝛼 and 𝛽 are

used to optimize the function and minimize the amplitude
estimation error (see [22] for details). In the work [22], the
analyzed 𝑓

𝑗
in a whitened signal Λ(𝑘,𝑚) is used to find its

harmonics with

𝑠 (𝜏) =

𝑀

∑

ℎ
𝑟
=1

𝑔 (𝜏, 𝑐)max
𝑞

|Λ (𝑘,𝑚)| , (15)

where 𝑞 is a range of frequency bins in the vicinity of 𝑓
𝑗

analyzed. The parameter 𝑞 indicates that the signal spectrum
is divided into analysis blocks, to find the fundamental fre-
quencies. Thus, 𝑠(𝜏) becomes a linear function of the magni-
tude spectrum Λ(𝑘,𝑚). Then, a residual spectrum Λ

𝑅
(𝑘,𝑚)

is initialized to Λ(𝑘,𝑚), and a fundamental period 𝜏 is
estimated using Λ

𝑅
(𝑘,𝑚). The harmonics of 𝜏 are found in

ℎ
𝑟
𝑓
𝑠
/𝜏, and then they are added to a vector Λ

𝐷
(𝑘,𝑚) in their

corresponding position of the spectrum. The new residual
spectrum is calculated as

Λ
𝑅
(𝑘,𝑚) ←󳨀 max (0,Λ

𝑅
(𝑘,𝑚) − 𝑑Λ

𝐷
(𝑘,𝑚)) , (16)

where 𝑑 = [0, 1] is the amount of subtraction. This process
iteratively computes a different fundamental frequency using
the methodology described above. The algorithm finishes
until there are nomore harmonics inΛ

𝑅
(𝑘,𝑚) to be analyzed.

Equation (15) was adapted to keep the notation of our work;
refer to [22] for further analysis.

In this study, we propose a modification of Klapuri’s algo-
rithm, in an attempt to achieve a better estimate of the multi-
ple fundamental frequencies. Using (14) and the 𝑚th whit-
ened signal Λ(𝑘,𝑚), the multiple fundamental frequencies
can be found by using

Φ (𝑘,𝑚) = 𝑑
𝑘
∑

ℎ
𝑟

𝑔 (𝜏, ℎ
𝑟
)
󵄨󵄨󵄨󵄨Λ (ℎ𝑟𝑘,𝑚)

󵄨󵄨󵄨󵄨 , (17)

where ℎ
𝑟
= {𝑛 | 𝑛 ∈ Z, 𝑛 > 1, 𝑛𝑘 < 𝐾/2} for 𝑘 = 0, 1, . . . ,

𝐾/2. Equation (17) analyzes all frequency bins and its har-
monics in the signal spectrum.This equation adds to the 𝑘th
frequency bin, all its harmonics in ℎ

𝑟
𝑘 of the entire spectrum.

Besides, theweighting function performs an estimation of the
harmonic amplitude that must be added to the 𝑘th frequency
bin. Observe that the weighting function does not modify the
original amplitude of the harmonics.

Finally when all frequency bins have been analyzed, the
resulting signal has all its fundamental frequencies with high
amplitude. This will help the classifier to have an accurate
performance.

3.2. Feature Selection. Theobjective of this paper is to classify
frequencies.Then, the inputs of the classifier are all frequency
bins that come from the FFT. However, not all frequency
bins will have relevant information. Therefore, a method to
remove unnecessary data and enhance the relevant data has
to be performed.This will result in a reduction of the number
of inputs to the classifier.

We propose a method based on the uncertainty of the
frequency bins. This method will discriminate all those that
are not relevant for the classifier in order to improve its
performance.

In Wei [34], it is stated that, similarly to the entropy, the
variance can be considered as a measure of uncertainty of
a random variable, if and only if the distribution has one
central tendency. The histograms for all frequency bins of
the 48 chord types were calculated. This can be used to
verify whether the distribution could be approximated to any
distribution with only one central tendency. For simplicity,
Figure 4 represents one frequency bin distribution of a 𝐶

major and a 𝐶 minor chord, respectively; it can be seen that
the distribution fits into a Gaussian distribution. This same
behavior was observed in the other samples of the 48 different
chords. This demonstrates that the variance can be used in
this study as an uncertainty measure in the frequency bins.

In order to perform the feature selection using the
uncertainty of the frequency bins, first consider a matrix Φ
defined by

Φ =

[
[
[
[
[
[
[

[

󳨀→
𝑎
1

󳨀→
𝑎
2

.

.

.

󳨀→
𝑎
𝑓

]
]
]
]
]
]
]

]

, (18)

where 󳨀→
𝑎
𝑓
is a vector formed by the magnitudes of the 𝑓th-

component frequency bin of all audio samples.The variances
of each 󳨀→

𝑎
𝑓
can be computed with

𝜎
2

𝑓
=

1

𝑚

𝑚

∑

𝑞=1

(
󳨀→
𝑎
𝑓
(𝑞) − 𝜇)

2

, for 𝑓 = 1, 2, . . . , 𝑓
𝐿
, (19)

where
𝜇 = 𝐸 {

󳨀→
𝑎
𝑓
} . (20)

If 𝜎2
𝑓

≈ 0, then it means that for that particular frequency
bin the input is quasi-constant; consequently this frequency
bin can be eliminated from all audio samples. This can be
achieved if we consider

𝜎
2

max = max
𝑓

{𝜎⃗
2

𝑓
} , (21)

and a vector ]⃗ind formed with the indexes 𝑓 of 𝜎⃗2
𝑓
that are

defined by

]⃗ind = {𝜎⃗
2

𝑓
| (𝜎⃗
2

𝑓
≥ 𝜉𝜎
2

max)} , where 0 ≤ 𝜉 ≤ 1. (22)

Once feature selection has been performed, the remaining
frequency bins will form the input to the classifier.
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Figure 4: Central tendency of the fundamental frequency of a 𝐶 chord.
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3.3. Classifier. Classification is an important part for chord
transcription. In order to perform a good classification,
important data will be generated from the original infor-
mation. Then, a classification algorithm will be able to
label the chords. Artificial Neural Networks [35] (ANNs)
can be considered as “massively parallel computing systems
consisting of an extremely large number of simple processors
with many interconnections”; according to Jain et al. [36]
ANNshave been used in chord recognition as a preprocessing
method or as a classification method. Gagnon et al. [37]
proposed a method with ANN to preclassify the number of
strings plucked in a chord. Humphrey and Bello [38] used
labeled data to train a convolutional neural network. In this
study, an Artificial Neural Network was used to perform
classification. Figure 5 represents the configuration for the
ANN used in this work.TheANNwas trained using the Back
Propagation algorithm [39].

4. Experimental Results

Computer simulationswere performed to quantitatively eval-
uate the proposed method. The performance of two state-
of-the-art references [21, 23] was compared with the present
work.

Databases for training and testing containing four chord
types (major, minor, major 7th, andminor 7th) with different
versions of the same chord are considered. Electric and
acoustic guitar recordings were used to construct the training
data set. A total of 25 minutes were recorded from an electric
guitar, and a total of 30 minutes were recorded from an
acoustic guitar. Recordings include sets of chords played
consecutively (e.g., 𝐶-𝐶♯-𝐷-𝐷♯ . . .), as well as some parts
of songs. The database used for evaluation was provided
by Barbancho et al. [21]. This database has 14 recordings:
11 recordings from two different Spanish guitars played by
two different guitar players, 2 recordings from an electric
guitar, and 1 recording from an acoustic guitar, making a
total duration of 21 minutes and 50 seconds. The sampling
frequency 𝑓

𝑠
is of 44100Hz for all audio recordings.

The training data set was divided into frames of 93ms,
leading to a FFT of 4096 frequency bins. In the spectral
whitening, the signal was zero-padded to twice its length
before applying the frequency domain transform, so a FFT
of 8192 data was obtained. For the spectral whitening, the 𝐾
parameter takes the original length of the FFT but the length
of the whitened signals remains at 4096 frequency bins. For
the multiple fundamental frequency estimation, the 𝛼 and 𝛽

parameters are constant and set to 52 and 320, respectively,
as in Klapuri [22], while the parameter 𝑑 was adjusted to
improve performance. An optimum value of 0.99 was found.
This parameter differs from the value in [22] because, in our
method, the signal is modified in every cycle that ℎ

𝑟
in (15)

increases; on the other hand, Klapuri [22] modifies the signal
after ℎ

𝑟
increases to its higher value.
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Table 1: Frequency variances and threshold 𝜉𝜎max = 0.050.

Variance 0.012 0.052 ⋅ ⋅ ⋅ 0.037 0.055 ⋅ ⋅ ⋅ 0.048 0.060 0.010
Frequency bin 130 131 ⋅ ⋅ ⋅ 163 164 ⋅ ⋅ ⋅ 195 196 197

Table 2: Classifier inputs with threshold 𝜉𝜎max = 0.050.

Classifier input ⋅ ⋅ ⋅ 𝑗th 𝑗th + 1 𝑗th + 2 ⋅ ⋅ ⋅

Frequency bin ⋅ ⋅ ⋅ 131 164 196 ⋅ ⋅ ⋅
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Figure 6: Training set before feature extraction.

These processes were applied to all audio samples to build
a training data set. In this case, the data set is a matrix of
4096 rows (frequency bins) by 5000 columns (audio samples).
In (21), the maximum variance for all frequency bins in
the audio samples is computed. Equation (22) proposes a
threshold to remove all those frequency bins that remain
quasi-constant. For instance, suppose that a threshold of 0.05
is set, and some frequency bins variances (shown in Table 1)
are evaluated. Only those above the threshold will be taken as
inputs to the classifier, as is shown in Table 2.

Performance tests were made to find the optimal value
for 𝜉. This parameter was varied; then the ANN was trained
and evaluated. The process was repeated until the best result
was obtained. The 𝜉 parameter was found to be optimal
at 0.01326. This allows a 95.6% reduction of the total of
the frequency bins, while keeping the relevant information.
Therefore, we concluded that, for a 𝜉 value lower than 0.01326,
some information required for a correct classification is lost.
Figure 6 shows part of the training data set, in fact only
frequency bins in the range [0, 500], and 3000 audio samples
are depicted. Figure 7 shows the same data set of Figure 6
after the feature extraction algorithm was applied. It can be
observed that the algorithmmaintains sufficient information
to train the classifier.

An ANN was used as a classification method with 183
inputs and 48 outputs. The applied performance metric was
the ratio of the number of correctly classified chords to the
total number of frames analyzed.

The validation test had the same structure as the one
presented in Figure 3. First, audio data was loaded. Second,
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Figure 7: Training set after feature extraction.

Table 3: Comparison between methods.

Reference method [21] [48 possibilities: major,
minor, major 7th, and minor 7th]

PM 95%
PHY 83%
MUS 86%
PC 75%

Reference method [23] [24 (major/minor) and
48 (major, minor, major 7th, and minor 7th)
possibilities evaluated separately]

MM 91%
MMC 80%
CC 70%

Proposed method (48 possibilities: major,
minor, major 7th, and minor 7th) VTH 93%

a frequency domain transformation and a spectral whitening
are applied to the signal. Finally, the multiple fundamental
frequency estimation algorithm is used. At this point, the
signal has 4096 frequency bins. To reduce the number of
frequency bins, only those that meet (22) are taken from the
signal and then passed through the classifier.

The results of the proposed method VTH (Variance
Threshold) in this work were compared with two state-of-the-
art methods. The best are shown in Table 3; specifically 48
chord types with different variants of the same chord were
evaluated. For referencemethodproposed byBarbancho et al.
[21], experiments with different algorithms were performed.
This method is denoted by PM and includes all models
described next. The PHY model describes the probability of
the physical transition between chords. These probabilities
are computed by measuring the cost of moving the fingers
from one position to another. The MUS model is based on
musical transition probabilities, that is, the probabilities of
switching between chords. These were estimated from the
first eight albums of The Beatles. And, the PC model is
equal to the proposed method but without the transition
probabilities; instead, uniform transition probabilities are
used. All models were separately tested; an accuracy of 86%
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was achieved atmost.The best result was obtained fromusing
the combination of all methods; a 95% accuracy was achieved
in this case.

For the reference method proposed by Ryynänen and
Klapuri [23], the evaluation results were taken from [21]; in
this case, three tests were performed. First, MM tests (only
major and minor chords) were carried on; for all three tests,
this was the one with the highest accuracy (91%). Second,
MMC tests were executed, all chords were taken into account;
however 7th major/minor chords labeled as major/minor
were correctly classified; that is, a𝐶Maj7 labeled as𝐶Maj was
correct. Finally, CC tests were set with the 48 possibilities;
that is, 7th major/minor chords labeled as major/minor were
incorrect; this results in an accuracy of 70%.

The proposed method on this paper achieves an accuracy
of 93% in the evaluation test. This classification performance
was achieved with a 95% confidence interval of [91.4, 94.6].
The results are competitive with the two reference methods.
Even though Barbancho et al. [21] have a 95% of accuracy,
it is only achieved when all algorithms PHY, MUS, and
PC are combined. Besides, HMM needs the calculations of
probability transitions between the states of the model (48
chord types). This makes their method more complex than
the one presented in this work. This paper focuses only on
chord recognition, so the comparison with [21] does not take
into consideration the finger configuration.

5. Conclusions

Amethod to classify chords of an audio signal is proposed in
this work. This is based on a frequency domain transforma-
tion, where harmonics are the key to find the fundamental
frequencies that compose the input signal. It was found that
all remaining frequency bins after feature extraction were in
the range from 40Hz to 800Hz.This means that the relevant
information for the classifier is located on the low frequency
end.

The chords considered were major, minor, major 7th, and
minor 7th. Two state-of-the-art methods, which used the
same chords, were taken to compare our study. All computer
simulations were performed using the same database. The
reference method from Ryynänen and Klapuri [23] had the
best performance when only 24 chord types were considered.
Our method outperforms the method of Ryynänen and
Klapuri by 2%, even when, in our work, 48 chord types were
classified. The reference method of Barbancho et al. [21] had
an accuracy of 95%; however, they performed a signal analysis
to propose two statistical models and a third one that does
not consider probability transitions between states.Their best
performance is achieved with all models working together; if
they are separately tested, the performance is at most 86%.
Also, their classificationmethod is based on aHiddenMarkov
Model that needs interconnected states.

The method presented in this work avoids designing
statistical models and interconnected states for the HMM.
The Artificial Neural Network as a classification method
works with a high precision when the data presented have
been processed with an appropriate algorithm.The proposed

method for feature selection achieves high accuracy, because
the data presented to the classifier have the pertinent infor-
mation to be trained.

The sampling frequency of 44100Hz and the windowing
of 4096 data result in a frequency resolution of 10Hz. With
this frequency resolution it is not possible to distinguish
the low frequencies of the guitar, for example, an 𝐸 with
82Hz and an 𝐹 with 87Hz. However, the original signal
has six sources (strings), where three of them are octaves
from the other three (except for 7th chords). Then, because
the proposed method for multiple fundamental frequency
estimation adds the harmonics for every single 𝑘th bin, the
high octaves can be raised. For example, for an 𝐸 of 82Hz,
the octave at 164Hz will also be raised.Then, this octave with
the other fundamentals gives a correct classification of the
chord. In the case of an 𝐹, the fundamental at 87Hz can not
be distinguished from the frequency of 82Hz. Nevertheless,
the octave at 174Hz will be perfectly raised; so with the other
fundamentals frequencies of 𝐹, the ANN performs a correct
classification.

The present work due to its simplicity can be applied
to chord recognition in some devices, for example, a Field-
ProgrammableGateArray (FPGA) or somemicrocontrollers.
This study leaves for a future work the source separation of
each string in the guitar. Once a played chord is known, we
can make some assumptions about where the hand playing
the chord is.Thus,we can apply somemethods of blind source
separation to obtain the audio of each guitar string. Besides,
with the information of separated strings, the classifier can
be extended for a wide set of chord families. Because the
classification can be performed by a single string instead
of the mixture of six strings, this can lead to the complete
transcription of guitar chords and identification of strings
being played.
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